Li-ion Battery Recycling Market 2023-2043

IDTechEx forecasts that by 2043, approximately 23.8 million tonnes of Li-ion batteries will be recycled, equivalent to US$101B in valuable metals. Li-ion batteries dominate electric vehicles (EV) and consumer electronics markets and are expected to be the main battery technology used in stationary energy storage. However, the sustainability of Li-ion batteries relies on their entire lifecycle management, including at end-of-life (EOL). Furthermore, the availability of raw materials such as cobalt is becoming a growing concern. By recycling Li-ion batteries, it is possible to recover the embedded value of battery metals and establish a circular supply chain, creating revenues and allowing battery manufacturers to shield themselves against volatile commodity prices of battery materials. Stakeholders involved in the Li-ion battery supply chain are recognizing the potential of recycling, and the Li-ion battery recycling market is projected to grow significantly over the next twenty years.
 
 
Companies are preparing for the growing availability of waste Li-ion batteries. The past year has seen a growing number of investments in Li-ion battery recycling companies, as well as the forming of new joint ventures (JVs) between recyclers and battery manufacturers. Some of these strategic partnerships will see battery manufacturers providing recyclers with recycling feedstock. This will promote a more consistent and stable supply of feedstock directly to recyclers, while allowing battery manufacturers to keep some of their valuable battery materials within a closed loop circular supply chain. This will start to reduce reliance on mining for raw materials, which also brings environmental benefits. Other JVs establish plans for constructing new recycling facilities. Detailed analysis is provided in the report, detailing new facility roadmaps by region, company and recycling technique.
 
The majority of recycling feedstock currently comes from cell manufacturing scrap, with most of this residing in China. Most consumer electronics batteries are not recycled, due to the difficulty in collecting these. However, it will be easier to establish collection networks for EOL EV batteries. Extended producer responsibility (EPR) in several countries mandates that the original equipment manufacturer (OEM) is responsible for the collection of retired EV batteries for recycling. Over the coming two decades, the exponential growth in demand for EVs will see EV batteries dominating the Li-ion battery recycling market, while manufacturing scrap will still form a reasonably sized source of feedstock. Recyclers have started to strategically co-locate their facilities near cell manufacturing facilities to reduce feedstock transportation costs.
 
The report provides an in-depth analysis of the current state of the Li-ion battery recycling market, including a global technology and policy deep-dive. While China currently has the most extensive policies, other regions such as the EU and India have started to implement their own policies. The EU Battey Regulation and India ‘Battery Waste Management Rules 2022’ outline targets, which increase over time, for Li-ion battery collection rates, material recovery efficiencies and minimum recycled contents in new batteries. These policies will drive demand for battery recycling in these regions. Through the Inflation Reduction Act (IRA), the US government is offering an Advanced Manufacturing Production Credit (PTC), applying to both battery component production and critical battery minerals. If 40% (by value) of critical battery minerals are sourced from recyclers in North America, EV battery manufacturers will be eligible for the tax credit. While not strictly a recycling-specific policy, this will incentivize recycling and the forming of strategic relationships between battery manufacturers and recyclers in the US.
 
However, compared to other regions, the US has fewer major battery recycling companies, most of which primarily focus on the production of black mass. This requires further refining into metal salts via hydrometallurgical processing. Salts can be further processed to produce new cathode precursor material. Some US companies are only starting to plan commercial-scale hydrometallurgical recycling plants. Therefore, wide-scale implementation of domestically sourced recycled minerals in new EV batteries in the US is unlikely in the short-term. From analysis on data on 80 Li-ion battery recyclers worldwide, IDTechEx report on multiple commercial-scale recycling plants planned across key regions over the next few years, as well as up-to-date mechanical, hydrometallurgical and pyrometallurgical process descriptions, and developments in direct recycling techniques.
 
Some of the key issues regarding efficient Li-ion battery recycling stem from battery collection and disassembly. Without an efficient battery collection network, the current lower volume of batteries to be recycled or high cost of collection could hinder economical battery recycling. Due to EV batteries lacking design standardization across OEMs, battery pack disassembly is a complex procedure which requires a skilled workforce to perform this safely. Another issue is that the value of $/kWh within EV batteries is expected to be lower in comparison to consumer electronics batteries. This implies that recyclers will need to extract a greater amount of material at higher levels of purity and efficiency to make their recycling process economically viable.
 
Another key topic of discussion is whether to recycle or repurpose retired EV batteries for second-life applications. By choosing not to repurpose batteries, this potentially wastes some of the remaining value that these batteries could have in applications such as stationary energy storage. However, repurposing comes with many technical considerations, one of which depends on the State of Health (SOH) of the battery at EOL. Accounting for this across a large volume of retired EV batteries with different use histories is but one difficult factor to manage. Repurposing delays the recycling process but offers to maximize the value of the battery. Recycling will eventually be necessary to re-obtain valuable battery metals. The report discusses the economics of Li-ion battery recycling and the key factors that might impact its value.
 
This IDTechEx report provides twenty-year market forecasts on the Li-ion battery recycling market for the period 2020-2043, in both volume and market value. Forecast breakdowns are provided by region, cathode chemistry, Li-ion battery sector (manufacturing scrap, EVs, stationary energy storage and consumer electronics), and key metals (lithium, cobalt, nickel, manganese, copper and aluminum) recovered. EVs are split into electric cars, light-commercial vehicles, trucks, buses and two-wheelers (scooters and motorcycles). Data is provided in GWh, ktonnes, and US$B.
 
Source: idtechex.com