Environmental Gas Sensors 2020-2030

        Poor air quality causes more deaths annually than HIV/AIDS and malaria combined. A lack of low-cost environmental monitoring equipment prevents individuals from taking action to improve air quality. Currently environmental monitoring methods are expensive and provide low spatial coverage, making their usefulness to individuals limited.

        Sensors are based on tried and tested technology, new methods of manufacture are enabling smaller, lower power and more selective sensors. This has led to a tipping point in the industry, enabling the integration of sensors into low cost devices and into everyday consumer electronics such as mobile phones and wearable devices. In the future, a range of detection principles will be used to assess the wide range of pollutants in the environment.

        At the same time, sensors will play a key role in IoT development and will be used extensively in smart home and smart city programmes. Heating, ventilation and air conditioning (HVAC) systems, air purifiers, smart windows and other applications will employ sensors to improve the quality of life of individuals across the world. We expect a growing market for gas sensors used in smart homes and smart cities.

        In this report, we forecast the market for environmental gas sensors from 2020 to 2030. The atmospheric pollutants under examination include CO2, volatile organic compounds, NOx, Ammonia, SO2 and CO. Many pollutants exist at similar concentrations in the region of parts per billion (ppb). Consequently, there is a greater need for selective sensors in environmental monitoring. Another focus is the particle pollutant of micron size, as the concern of smog is growing.

This report covers gas sensors based on techniques of:
• Pellistor gas sensor
• Infrared (IR) gas sensor
• Metal oxide semiconductor (MOS) gas sensor
• Electrochemical (EC) gas sensor
• Optical particle monitor (OPM) gas sensor
• Photoionization detectors (PID)
• Field Asymmetric Ion Mobility Spectrometry (FAIMS)
• Quartz crystal microbalance (QCM)
• And miniaturised gas chromatograph (GC)

We provide a comprehensive study on current available devices that use gas sensors to monitor environment, including sensors in mobile devices, wearables, air purifiers, automobiles, smart cities, and to measure indoor air quality.

Source: www.idtechex.com